
Transmission through a nonlinear junction of photonic crystal waveguides

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 J. Phys.: Condens. Matter 20 025202

(http://iopscience.iop.org/0953-8984/20/2/025202)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 29/05/2010 at 07:21

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/20/2
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 20 (2008) 025202 (7pp) doi:10.1088/0953-8984/20/02/025202

Transmission through a nonlinear junction
of photonic crystal waveguides
A R McGurn

Department of Physics, Western Michigan University, Kalamazoo, MI 49008, USA

E-mail: arthur.mcgurn@wmich.edu

Received 6 September 2007, in final form 5 November 2007
Published 6 December 2007
Online at stacks.iop.org/JPhysCM/20/025202

Abstract
The transmission characteristics of a junction of Kerr nonlinear optical media connecting three
linear media photonic crystal waveguides is studied as a function of the nonlinearity of the
junction media. The system treated and the difference equation approach used here were
originally introduced by McGurn and Birkok (2004 Phys. Rev. B 69 235105) where the focus
was on showing the existence of intrinsic localized modes in the junction material. Here the
conditions under which transmission resonances exist in the system are investigated as
functions of the parameters characterizing the nonlinearity of the junction media. The patterns
of resonant transmission peaks plotted in the parameter space of the nonlinearity are obtained
and explained in terms of junction modes. The transmission resonances are seen to depend on
the intrinsic localized modes, renormalized Fabry–Perot excitations, and other types of
nonlinear excitations in the junction media. Some of the general features of the Kerr system
results are compared with results from a simple junction system based on the logistic mapping.

1. Introduction

There is a long history of the study of patterns generated
from nonlinear mappings [1–7]. Well known examples are
patterns associated with chaos found in solutions of the logistic
and other related mappings and the various attractors that
characterize the dynamics of such systems [1–3]. From simple
types of nonlinearity these systems produce complex patterns
in their solutions that are unlike those found in linear mappings.
Other types of patterns found in chemical and biological
systems are the Turing patterns [1, 4–6]. Here the complexity
in the pattern solutions arises from the interplay of the rate
of diffusion and reactive transitions in various inhomogeneous
processes. In more recent examples, Wolfram [7] shows that
amazingly complex patterns are generated from small sets of
short, compact, recursive rules. The complex behavior follows
from the straightforward application of a simple rule over and
over again. In all of these studies the common element is that
fundamental changes in the dynamics of a system come from
the introduction of very simple nonlinearities, even at the level
of perturbations.

In this paper we look at a simple mapping or recursion
relation from the study of the transmission of light through
a waveguide junction of Kerr nonlinear media that joins
three photonic crystal waveguides made of linear optical

media [8–10]. In this system guided waves are incident on the
junction from one waveguide and are transmitted into the two
remaining waveguides. The object is to investigate the pattern
of transmission resonances in the transmission coefficient
computed as a function of the parameters characterizing the
nonlinearity of the junction. The recursion relation considered
was obtained in [11–13] where some of its properties were
investigated. The system is based on a two-dimensional
photonic crystal composed as a square lattice of infinite parallel
axis dielectric cylinders and has a band structure consisting of
sets of stop and pass bands for light moving in the plane of
the lattice [14–17]. A waveguide is formed in the photonic
crystal by cylinder replacement of a row of cylinders in the
lattice with the replacement cylinders chosen so that a guided
mode at a frequency in a stop band propagates in the plane of
the lattice along the row of waveguide cylinders [7–12, 15–21].
The junction we study connects three semi-infinite waveguides.
It has a center site and a few sites along each waveguide formed
from Kerr nonlinear media [22–24]. (Here the nonlinearity
is only in the junction material.) The transmission through
the junction is studied in the parameter space describing the
dielectric properties of the Kerr material [8–10, 13, 14, 22–26].

The object of the study is to determine the peaks in
the transmission coefficient through the junction, to find
their origins, to classify the patterns that arise in the peak
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distribution when presented as functions of the parameters
describing the Kerr nonlinear media, and to associate these
peaks with various resonant excitations. Of particular interest
will be the effects in the system of intrinsic localized modes,
renormalized Fabry–Perot excitations, and other types of
nonlinear modes of the junction.

In section 2, a brief review of the difference equation
theory of the junction is given followed by discussions of the
transmission coefficient patterns in the parameter space of the
Kerr medium. The nature of the excitations in the junction
at transmission resonances are discussed. A brief comparison
is made with a simple junction model based on the logistic
mapping. In section 3, general conclusions are presented.

2. Junction transmission

The transmission through a junction of Kerr nonlinear media
joining three identical semi-infinite waveguides of linear
dielectric is studied [8]. One waveguide contains the incident
and reflected modes and the other two waveguides contain
modes of equal intensity which are received as transmitted
modes. The photonic crystal is a square lattice array in
the x–y plane of parallel axis cylinders and the semi-infinite
waveguides are along the positive x-, y-, and negative y-
axes [8, 9, 12]. The junction consists of a central Kerr site at
the origin of the x- and y-axes and first and second identical
Kerr sites along the semi-infinite waveguides (see figure 1).
The model was originally discussed in [8] and [9]. The
waveguide and junction system is composed of replacement
cylinders differing from the cylinders of the bulk photonic
crystal through the addition of a small amount of dielectric
material about the axes of each replacement cylinder. The
electric field of the guided modes is separately constant over
the added material in each replacement cylinder so that the
electric fields at the centers of the replacement cylinders are
related to one another by a set of difference equations. These
equations allow for the solutions of the waveguide modes and
the transmission coefficients through the Kerr junction [8]. For
a detailed discussion of the origin of the difference equations
the reader is referred to [11–13], and a brief outline of the
discussions is also given in the appendix.

2.1. Review of the model equations

The waveguides and junction are characterized by a set of
difference equations. For the semi-infinite channels, along the
x-axis [8]

En,0 = gl[En,0 + b(En+1,0 + En−1,0)] (1)

for n > 4 and along the y-axis

E0,n = gl[E0,n + b(E0,n−1 + E0,n+1)] (2)

for |n| > 4. For the junction material

E0,0 = g[(1 + λ|E0,0|2)E0,0

+ b(1 + λ|E0,−1|2)E0,−1 + b(1 + λ|E0,1|2)E0,1

+ b(1 + λ|E1,0|2)E1,0], (3)

Figure 1. Schematic drawing of: (a) two-dimensional photonic
crystal. The dielectric cylinders are perpendicular to the plane. The
light moves in the plane and is polarized with the electric field
parallel to the cylinder axes. (b) Photonic crystal waveguides
meeting at a junction of Kerr nonlinear media. The open circles
represent the linear media cylinders of the waveguide and the circles
with the dot are the cylinders of the junction. The cylinders of the
photonic crystal are represented by black circles.

E0,±1 = g[(1 + λ|E0,±1|2)E0,±1 + b(1 + λ|E0,0|2)E0,0

+ b(1 + λ|E0,±2|2)E0,±2], (4)

E1,0 = g[(1 + λ|E1,0|2)E1,0 + b(1 + λ|E0,0|2)E0,0

+ b(1 + λ|E2,0|2)E2,0], (5)

E0,±2 = g[(1 + λ|E0,±2|2)E0,±2 + b(1 + λ|E0,±1|2)E0,±1]
+ glbE0,±3. (6)

E2,0 = g[(1 + λ|E2,0|2)E2,0 + b(1 + λ|E1,0|2)E1,0]
+ glbE3,0, (7)

E0,±3 = gl[E0,±3 + bE0,±4] + gb(1 + λ|E0,±2|2)E0,±2, (8)

and

E3,0 = gl[E3,0 + bE4,0] + gb(1 + λ|E2,0|2)E2,0. (9)

Here Em, j is the electric field at the (m, j) lattice site which
is polarized parallel to the cylinder axes, gl characterizes
the properties of the dielectric cylinders in the linear media
waveguides, g and λ �= 0 characterize the properties of the
dielectric cylinders in the junction of Kerr media, and b is the
coupling between the electric fields on nearest neighbor lattice
sites of the waveguide. (See the appendix for more details
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Figure 2. Plots of the peaks of the transmission coefficient, T , in the (r, g) plane. In: (a) peaks with 0.0 � T � 1.0 are shown, (b) peaks with
0.6 � T � 1.0 are shown, (c) peaks with 0.3 � T � 0.6 are shown, and (d) peaks with 0.1 � T � 0.3 are shown.

about the parameters. In particular, a detailed expression is
given there for b in terms of Green’s functions of the equations
for the electric field modes of the photonic crystal and the
dielectric constants of the waveguide and photonic crystal.)

The solutions in the transmitted mode linear media
waveguides are of the form [8]

E0,n = En,0 = r xeikn (10)

for n > 2 where r and x are real, and in the incident waveguide
channel

E0,n = ueikn + ve−ikn (11)

for n < −2. In the junction media the field at each site is
a complex number satisfying the difference equations. The
transmission coefficient is T = 2|r x/u|2 which is obtained
as a function of g and r for fixed λx2. The solutions in
the discussions below are made for parameters used in [8].
Specifically, b = 0.0869, λx2 = 0.003, k = 3.1, and
gl = 1/(1 + 2b cos(k)).

2.2. Nonlinear transmission coefficient

The transmission coefficient, T , of the junction is studied as
a function of the parameters of the nonlinear media. The
transmission coefficient computed as a function of g for fixed
r is found to be essentially a series of resonant transmission

peaks [8]. In the limit that r = 0 the media in the junction
is linear dielectric media, and the nonlinearity of the junction
media increases as r increases from zero. In the following,
discussions are given of the peaks found in the (r, g) parameter
space, and these are associated with different types of junction
excitations.

In figure 2 the position of peaks of T in the (r, g) plane
are plotted. Figure 2(a) shows all peaks for 0.0 � T � 1.0 and
g > 0.4. The remaining subfigures present peaks in figure 2(b)
for 0.6 � T � 1.0, in figure 2(c) for 0.3 � T � 0.6, and
in figure 2(d) for 0.1 � T � 0.3. The plots were made
by computing the transmission coefficient as a function of g
for a mesh of points along the r -axis and selecting out the
maxima in T . These maxima are seen to cluster together into
a pattern of different groups of features in the (r, g) plane,
with the most significant peaks found for g > 0.5. Junction
excitations of a given type are found to be held in common
within a group of features. We now turn to a discussion of
the excitations associated with different groupings in the (r, g)

plane. Our focus will be on the large transmission peaks found
in figure 2(b).

Figure 3 presents a number of plots for the junction
wavefunctions at different (r, g) groupings. The modes of the
junction of nonlinear media are displayed as λ|E0,n|2 versus
n = −2, −1, 0, 1, 2, while results for the junction in the λ = 0
limit are given in terms of |E0,n|2 versus n.
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Figure 3. Plots of λ|E0,n|2 (|E0,n|2) versus n for the nonlinear (linear) media junction sites. In: (a) the linear media modes are shown for
(0.0, 0.9490), (0.0, 0.8575), (0.0, 1.1635), (0.0, 1.2361), (0.0, 1.0661) from top to bottom at n = −1. (b) The modes for (0.4, 0.7314),
(0.4, 0.8440), (0.1, 0.8568) are shown from top to bottom at n = 0. The mode at (0.1, 0.8568) is multiplied by 10. (c) The modes
(1.4, 0.5878), (1.4, 0.8868), (0.1, 0.9487) from top to bottom at n = 1. The mode at (0.1, 0.9487) is multiplied by 100. (d) The modes
(2.5, 0.7041), (3.0, 0.7651), (3.0, 0.7664) from top to bottom at n = −1. (e) The modes at (0.9, 0.7407) and (1.0, 0.7387) are shown.
(f) The modes are (2.8, 0.9636) and (3.0, 0.9637) are shown. The lines in these plots are meant as a guide for the eyes. Note that in the r = 0
(linear) limit the absolute field amplitude has been taken as arbitrary as only the shape of the wavefunction is of interest. All values of (r, g)
refer to figure 2(b).

Figure 3(a) show results for the r = 0 (linear media
junction) limit. The guided modes resonate with five
different Fabry–Perot-like modes of the junction. These
resonances occur at (r, g) = (0.0, 0.8575), (0.0, 0.9490),
(0.0, 1.0661), (0.0, 1.1635), and (0.0, 1.2361). As r increases
the system becomes nonlinear and modes evolving from
(0.0, 1.0661), (0.0, 1.1635), (0.0, 1.2361) extend across the
top of figures 2(a) and (b) over the entire range of r . Along
these three bands the nonlinear modes look similar to the

linear modes they evolve from, but their amplitudes are fixed
by the nonlinearity of the junction media and increase with
increasing r . Bands of modes similar to those in the linear
media limit also evolve from (0.0, 0.9490), extending between
0.0 < r � 1.7, and (0.0, 0.8575), extending over 0.0 � r �
0.5.

In figure 3(b) wavefunctions are shown for some of a ridge
of modes found for 0.0 < r � 0.5 and 0.73 < g < 0.86.
The modes are located at (0.1, 0.8568), (0.4, 0.8440), and
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(0.4, 0.7314). Here the first two modes have small amplitudes
and evolve from the linear mode at (0.0, 0.8575). The mode
at (0.4, 0.7314), however, is an intrinsic localized mode, with
an amplitude and shape that are fixed to a large extent by the
Kerr nonlinearity of the junction media [8]. Using the theory
in [9] this mode is associated with an intrinsic localized mode
in a junction of semi-infinite Kerr nonlinear media waveguides.
The intrinsic localized mode occurs at g = 0.7435 with
amplitudes of λ|E0,0|2 = 0.273, λ|E0,±1|2 = λ|E1,0|2 =
0.0431, etc. (See [9] for the theory of intrinsic localized modes
and the formulas giving the values of the intrinsic localized
modes presented here.) It is important to note that the lower
branch of the ridge is associated with intrinsic localized modes
and this branch ends before the r = 0 axis.

Upon increasing the nonlinearity into the region 1.4 �
r � 1.7 another ridge of resonant modes is found at 0.58 �
g � 0.95. In figure 3(c) plots are shown of the nonlinear
media wavefunctions for (1.4, 0.5878), (1.4, 0.8868), and
(0.1, 0.9487). The mode at (1.4, 0.5878) can be thought of as
an array of three intrinsic localized modes, each occurring in
one of the nonlinear media junction leads. Each mode involves
the generation of a significant nonlinearity in the junction so
that the mode determines and is determined by the nonlinear
contribution to the dielectric media. The amplitude of the fields
in the linear media waveguides is much less than that at the
peaks of the intrinsic localized modes. The remaining two
modes, (0.1, 0.9487) and (1.4, 0.8868), have much smaller
field amplitudes and are essentially versions of the linear mode
at (0.0, 0.9490) that have been weakly renormalized by the
Kerr nonlinearity. The branch containing the intrinsic localized
modes is found to vanish for decreasing r before the r = 0 axis
is reached.

Increasing the nonlinearity into the region 2.5 � r �
3.0 and 0.7 < g < 0.8 a further ridge of new modes is
found. In figure 3(d) these modes are shown for (2.5, 0.7041),
(3.0, 0.7664), and (3.0, 0.7651). The modes are much broader
pulses than are those of the intrinsic localized modes and are
of much greater peak amplitudes than those of the intrinsic
localized modes. Again the fields at the peaks are much greater
than the fields in the linear media waveguide and than those
found in the previously discussed intrinsic localized modes.
These modes might be thought of as broader localized pulses.

The modes in the remaining features in figure 2(b) are
less easily characterized. Two modes are found in between
the ridge of the intrinsic localized junction modes and the
ridge of three intrinsic localized modes in the three junction
leads. These occur at (0.9, 0.7407) and (1.0, 0.7387) and
have wavefunctions plotted in figure 3(e). The modes are
similar in structure, exhibiting large nonlinearities within the
barrier generated by the small fields in the three semi-infinite
waveguides. The fields are more evenly spread between the
three junctions in a broad peak centered in the input lead
of the junction and comparatively large fields are formed in
the junction media by the much smaller fields in the linear
media waveguides. In addition, a branch of modes in found
containing modes at (2.8, 0.9636) and (3.0, 0.9637). Plots
of these modes are given in figure 3(f). It is seen the these
modes are formed as an interpolation between the boundary
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Figure 4. Plot of regions of r0,−3 = r0,3 + r3,0 = r in the (r, g) plane
for the system based on the logistic mapping.

conditions set by the incident and transmitted waveguide
modes. Here the field amplitude of the incident mode must
be as large as the field amplitude at the left hand edge of the
barrier material.

2.3. Logistic mapping

Similar types of behaviors to those in the Kerr media junction
are found in a simple model based on the logistic mapping [2].
Using a junction geometry similar to that in figure 1(b),
consider the junction defined by

r0,n+1 = gr0,n[1 − r0,n] (12)

for n = −3, −2, −1, 0, 1, 2, and

rn+1,0 = grn,0[1 − rn,0] (13)

for n = 0, 1, 2 where the rn,0 and r0,n are values of
quantities associated with the (n, 0) and (0, n) lattice sites,
respectively. Resonant transmission in this system is defined
by the condition that the input r0,−3 = r is equal to the sum of
the outputs, i.e., r0,3 +r3,0 = r where r0,3 = r3,0. The behavior
of the resulting resonant transmission solutions as plotted in the
(r, g) plane is found to be quite similar to that in the plots of
the transmission peaks in figure 2.

In figure 4 the transmission resonances are shown in
the (r, g) plane for 0.0 < r � 1.0 and 1.0 � g �
4.0. These were computed for a discrete mesh in g. As in
figure 2 the resonances cluster into a series of ridges, and the
wavefunctions for points within the same ridge exhibit similar
geometric properties. It is interesting to consider solutions that
have small inputs, i.e., r � 1. These solutions are found
to exhibit large intermediate peaks in the nonlinear media,
arising from the nonlinearity. Such solutions are similar in
this regards to intrinsic localized modes which depend on the
nonlinearity of the system for their existence. A mode of this
type exists for (r, g) = (0.002 35, 4.0) and its wavefunction is
shown in figure 5(a). This is the smallest non-zero r giving
a transmission resonance at g = 4.0. Another mode of
interest is one which gives resonant transmission for the largest
possible r . For g = 4.0 this occurs at (0.999 85, 4.0) and its
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Figure 5. Plot of the wavefunction r0,n versus n = −3, −2, −1, 0, 1, 2, 3. Results are presented for: (a) (0.002 35, 4.0) and
(b) (0.999 85, 4.0). The lines are meant as a guide for the eyes.

wavefunction shown in figure 5(b). The mode in figure 5(b)
displays a geometric similarity to that found in figure 3(f) in a
region of higher Kerr nonlinearities.

3. Conclusions

The transmission in a Kerr nonlinear junction has been studied
as a function of the parameters characterizing the nonlinearity.
It is found that: (1) The (r, g) plane has a patterning of
transmission coefficient peaks that group into various ridges,
and the different ridges can be identified with junction
wavefunctions of a specific field geometry. The wavefunctions
can be classified as evolving from the Fabry–Perot modes
of the linear media system, various intrinsic localized modes
whose generation is dependent on the nonlinearity, and other
types of resonantly excited modes in the junction. (2) The
intensity peaks for 0.60 � T � 1.0 are most easily classified
as in (1) and occur predominantly in the region g > 0.6. The
peaks of smaller intensities often occur in the neighborhood
of the 0.60 � T � 1.0 peaks and have wavefunctions that
are distortions of those of the 0.60 � T � 1.0 peaks. Many
smaller peaks are also found for g < 0.6. (3) Similar types
of patterning to those found for the transmission coefficient
in the (r, g) plane are found in the resonances of the logistic
mapping in the (r, g) plane. In some cases roughly similar
types of wavefunctions are found in both systems.

A comparison between the Kerr junction and logistic
mapping results suggest that some of the common features
observed in these system must be present in a wide variety of
nonlinear mappings. This suggests that transmission studies
such as those presented here should be effective in studying
general excitations in a variety of nonlinear media. As in
atomic, nuclear, and solid state systems an understanding of
the physics of the system proceeds from an understanding of its
variety of excitations. From the point of view of applications
of nonlinear media in optics and electronics, however, most
applications will rely on the understanding of nonlinear effects
in small systems such as those treated here.

Appendix

A brief summary of the origin of the difference equation
formulation is given here for the case in which the electric field

of the modes is polarized with the electric field parallel to the
axes of the dielectric cylinders. For more details the reader is
referred to [11, 12], and [13].

The photonic crystal is described by a periodic dielectric
function ε(�x‖) where �x‖ is in the plane of the Bravais lattice,
perpendicular to the axes of the dielectric cylinders. A
waveguide is defined by introducing a change in the dielectric
constant, δε(�x‖), in a row of dielectric cylinders. Using the
Helmholtz equation for the electric fields of the modes and
standard methods of Green’s functions, the electric fields of
the waveguide modes satisfy [12, 13]

E(�x‖) = ω2

c2

∫
d2x ′

‖G(�x‖, �x ′‖)δε( �x ′‖)E( �x ′‖). (A.1)

Here G(�x‖, �x ′‖) is the Green’s function of the Helmholtz
equations for the photonic crystal described by ε(�x‖). If δε(�x‖)
is non-zero only in a small region about the axes of cylinders
forming the waveguide channel and E(�x‖) changes slowly over
δε(�x‖) in each such cylinder, then equation (A.1) reduces (for a
waveguide along the x-axis for which only on site and nearest
neighbor site interactions are significant) to a set of difference
equations given by

En,0 = gp[ fn,0 En,0+b( fn+1,0 En+1,0+ fn−1,0 En−1,0)]. (A.2)

In equation (A.2), fn,0 = 1 + λ|En,0|2 with λ = 0 for
linear dielectric media, gp = ω2

c2

∫
d2x ′

‖G(0, �x ′‖)δε( �x ′‖) where
the integral is over the cylinder centered at (0, 0), and b =∫

d2x ′
‖G(a0î , �x ′‖)δε( �x ′‖)/

∫
d2x ′

‖G(0, �x ′‖)δε( �x ′‖) where the
integrals are computed as in the case of gp and a0 is the lattice
constant of the waveguide. In the evaluation of all of the
integrals in the definitions of gp and b, λ = 0.
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